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ABSTRACT 
 
Signal intensity in magnetic resonance images (MRIs) is affected by random noise. Assessing noise-induced signal 
variance is important for controlling image quality. Knowledge of signal variance is required for correctly computing the 
chi-square value, a measure of goodness of fit, when fitting signal data to estimate quantitative parameters such as T1 
and T2 relaxation times or diffusion tensor elements. Signal variance can be estimated from measurements of the noise 
variance in an object- and ghost-free region of the image background. However, identifying a large homogeneous region 
automatically is problematic. In this paper, a novel, fully automated approach for estimating the noise-induced signal 
variance in magnitude-reconstructed MRIs is proposed. This approach is based on the histogram analysis of the image 
signal intensity, explicitly by extracting the peak of the underlining Rayleigh distribution that would characterize the 
distribution of the background noise. The peak is extracted using a nonparametric univariate density estimation like the 
Parzen window density estimation; the corresponding peak position is shown here to be the expected signal variance in 
the object. The proposed method does not depend on prior foreground segmentation, and only one image with a small 
amount of background is required when the signal-to-noise ratio (SNR) is greater than three. This method is applicable 
to magnitude-reconstructed MRIs, though diffusion tensor (DT)-MRI is used here to demonstrate the approach. 
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1.  INTRODUCTION 
 
Magnetic resonance (MR) images are inevitably corrupted by random noise introduced during data acquisition. 
Estimation of the noise-induced signal variance in images is important for many reasons including its use as a measure 
of image quality assessment and MR system analysis. Knowledge of signal variance is also required for many image 
processing tasks such as image registration and filtering, and for functional MRI analysis. Moreover, it is needed to 
correctly compute the chi-square value, a measure of goodness of fit, when fitting signal data to estimate quantitative 
parameters such as T1 and T2 relaxation times or diffusion tensor elements. 
 
Noise variance 2

noiseσ  is commonly computed by selecting a signal-free background region manually. Signal variance 
2σ  can be estimated by using the appropriate bias correction factor described by Henkelman et.al. 1, 2, i.e., 

655022 ./noiseσ=σ . Automated object segmentation can be used to extract the background of an image; however, the 

background of MR images, particularly those acquired using echo planar imaging techniques, are rarely free from 
ghosting and other artifacts. Using the whole background region in estimating the noise variance could yield a biased 
signal variance. In addition, the results of an extracted background region often depend on the availability of accurate 
and reliable segmentation procedures. 
 
An approach takes into account that the noise measurement of magnitude-reconstructed MR image measurement can be 
characterized by a Rayleigh distribution 3. The mean and variance of the noise in the background of magnitude-
reconstructed images are estimated by fitting the Rayleigh distribution to an estimated probability density function of 
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pixel intensities. However, this implementation is susceptible to local optima encountered during the non-linear data 
fitting procedures. Furthermore, in a typical MR image, a bimodal or multi-modal distribution (see Fig. 1) containing a 
mixture of background and foreground values can be observed. Determining where to fit presumable distributions to the 
intensity histogram is not a trivial task 
 

 
Fig. 1. Bimodal distribution of a typical MR image 

 
Another approach for estimating the signal variance in MR images is the so-called double acquisition method 4. This 
approach, however, requires the use of two identical images (with the exception of noise) which are impractical to obtain 
due to physiological motion that may occur between acquisitions. Moreover, artifacts such as ghosting, magnetic 
susceptibility induced distortions, etc., may not be identical during two separate acquisitions.  
 
A novel method for estimating the noise-induced signal variance in magnitude-reconstructed MR images is proposed to 
overcome the shortcomings associated with the above methods. This proposed method is completely automatic and does 
not depend on prior foreground segmentation. It requires only one image with a small amount of background as long as 
the signal-to-noise ratio (SNR) is greater than three, though more images can be used to reduce the bias in the 
estimation. 
 
 

2.  METHODS 
 
Suppose Ar and Ai are the real and imaginary data corrupted by Gaussian distributed noise with zero mean and standard 
deviation σ . The probability density function (pdf) of the magnitude reconstructed data, 22

ir AAA += , is given by a 
Rician distribution (E1) where M is the magnitude image intensity and 0β is the zeroth-order Bessel function of the first 

kind. At low SNR, this distribution approaches the Rayleigh distribution (E2) with mean 2/M πσ= and variance 
22 )22( σπ−=σ /noise . At high SNR, the noise distribution approaches a Gaussian distribution (E3) with mean 

22 σ+= AM and variance 22 σ=σnoise . 

 
 
Note that the value of M for which p(M) in (E2) is maximum equals σ . This finding can be easily checked by 
differentiating (E2) with respect to M, setting the result equal to zero, and solving for M. 
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This information can be used to extract the standard deviation of the signal intensityσ  in the images by simply 
identifying the peak of the noise distribution. The corresponding peak location is thus equal toσ . 
 
 
2.1 Density Estimation Algorithm 
 
2.1.1 Frequency histograms 
 
A frequency histogram is used to summarize the intensity distribution of a univariate pixel data set (see Fig. 1). Given a 
location x0 and a bin width h, the frequency histogram can be written as  
 

×=
nh

xf 1)( 0  number of data points that fall in the interval [x0 – h/2, x0 + h/2),  

where n is the number of total data points.  
 
Choosing the number of bins or, equivalently, the width of each bin is important. If too many bins are used in 
constructing the histogram, the width of each bin, h, becomes smaller and the resultant histogram will show lots of 
variation. In contrast, if the width of each bin is too large, the result may not show well important features of the data 
such as bimodality. For normal distributed data, several proposed rules can ideally construct the corresponding 
frequency histogram that represents the underlying probability density function 5-7. However, noise in MR data is known 
to be Rician distributed and a bimodal or multi-modal distribution is usually assumed. We aim to develop an algorithm 
to compute an optimal bin width for this application. It uses the Sturges rule, log2(n)+1, as the initial number of bins 5 to 
compute the number of data points in a bin that contains the first peak of the histogram, say np. The number of bins (or 
bin width) is changed dynamically until np reaches a predefined number, say npeak. (i.e., the number of bins in the next 
iteration will be used in the current iteration by multiplying a default ratio, npeak / np). The choice of npeak is empirically 
set to 1% of the total data points for the diffusion tensor (DT)-MR data in our study. 
 
2.1.2 Parzen density estimation 
 
Apart from the histogram binning, kernel estimator is also commonly studied. The advantage of kernel probability 
density estimation over the histogram binning is their smoothness. We use Parzen density estimation, a nonparametric 
density estimator, to estimate the peak of the noise distribution. The general form of this kernel estimator can be written 
as follows,  
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The function K(t) is the kernel or basis function. The parameter h is the bandwidth, also called the window width or 
smooth parameter. We chose a Gaussian kernel as it is easy to manipulate and derive. The kernel estimator with a 
standard Gaussian basis function can be viewed as the sums of many small Gaussian bumps. The kernel size or window 
width is important and sometimes adapted to each application. The window width can be computed by minimizing the 
mean square error between the true and estimated density. In our simulation, the window width, h, is set to 1.06× s × n-1/5 
as suggested by Silverman 10, where s is the sample standard deviation and n is the sample size. The peak can be 
computed using an optimization algorithm such as the golden section search or Brent’s method in one dimension 8. We 
converted the problem of maximization to minimization by placing a negative sign on the function and used an IDL 
(Interactive Data Language, Research System Inc.) built-in function, the DFPMIN procedure, to find the peak. 
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2.2 Computational Consideration 
 
To estimate the signal variance in a 3D MRI volume, each slice is used individually as a subset to get the estimate of 
signal variance 2

iσ . The minimum 2
iσ is then selected as the signal variance for the whole volume. By selecting the 

minimum 2
iσ , we can obtain a value from the least “object signal” contaminated slice. In our DT-MRI data set that 

contains multiple volumes, the slices coming from different volumes, but with the same slice location, are used to form a 
subset for the estimation. For the Parzen window approach, the minimum estimated value is taken as the signal variance 
for the entire data set. For the histogram approach, however, the quartile value is taken instead. (See the Discussion 
Section for an explanation for this implementation.) 

 
 

3. DATA 
 
3.1 Monte Carlo Simulation 
 
A Monte Carlo simulation is performed to validate the proposed method. Since the requirement of our approach is a 
single image with certain signal-free regions (i.e., image background that contains only thermal noise), we are interested 
in knowing how much background is needed to accurately estimate the noise-induced signal variance in the object under 
different SNR. To simulate images with different SNRs we created synthetic images containing objects of different sizes 
and added Gaussian distributed noise in quadrature. 
 
Artifacts in the background of an MR image usually cause signal intensities to be higher than their normal values. To 
simulate this situation, we randomly corrupted some background points by increasing their intensity values by 50%. Our 
objective is to test the accuracy and robustness of the proposed method when different level of artifacts appeared in the 
image background under different SNR. 
 
 
3.2 MR data acquisition 
 
In order to assess the performance of the proposed method in real MR data, we acquired the brain DT-MR data sets from 
seven healthy volunteers. An image with RF turned off was acquired for each data set before subject scanning to provide 
a baseline for noise variance estimation. Each volunteer was scanned three times on different dates under the same 
setting to test the variability on noise assessment. Images were acquired on a CNV LX 1.5 GE MRI System (General 
Electric, Milwaukee, WI) with a diffusion-weighted, spin-echo, single-shot, EPI sequence with 2 × 2 × 2 mm3 resolution 
and 72 to 80 slices to cover the whole brain.  
 
 

4. RESULTS 
 
Figure 2 shows the simulation result of the proposed method on the amount of background required to properly estimate 
the peak of the noise distribution. If the error of the estimated signal standard deviation is set within 10%, 65% of the 
background in an image is required when SNR =3; 22% is required when SNR=4; and only a small amount of 
background is needed when SNR ≥ 5. In general, more background provides a better result. If the background is less 
than required, for example, less than 60% when SNR=3, the estimated signal standard deviation is somewhat over-
estimated. This result is understandable because the noise distribution is contaminated by the “object signal” and the 
mixture of noise and object signal will always cause the estimated peak to shift to the right. 
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Fig. 2 The background required for the kernel estimator to properly estimate 
the signal standard deviation (0.9σ < σestimated < 1.1σ) from an image (512*512). 

 
 
The simulation also shows that the proposed method is robust to artifacts if the artifacts in the image background cause 
the pixel intensities to be higher than their normal value. Figure 3 shows the error on estimated signal standard deviation 
when the artifact has a pixel intensity 50% higher than its normal value. Object size in this simulation is set at 30% of 
the image. Note that the error for the estimated signal standard deviation is within 15% even when the percentage of 
artifacts in the background reaches 60%. 
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Fig. 3 The error of estimated signal standard deviation with different 
percentages of artifacts in the background. Object size is 30% of the image. 
Artifacts’ pixel intensity is 50% higher than normal. 

 
 
For the DT-MR data images in our study, the SNR for all of 21 data sets was about 20. The true signal standard 
deviation for each data set was computed using the noise-only image (RF turned off) to provide a baseline value for 
comparison. Figure 4 shows the estimated noise-induced signal standard deviation using (1) the Parzen window 
approach, (2) the histogram approach, and (3) the conventional method where we manually select 30 signal-free regions 
from the background and compute the average of the estimated parameter. The result shows all three methods yield a 
reasonable estimation of the signal standard deviation with the Parzen window approach having the best result overall. 
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Fig. 4 Comparison of the baseline and estimated signal standard deviation using the 
Parzen window approach, the frequency histogram approach and the conventional 
method. For the conventional method, we manually select 30 signal-free regions in the 
image background. 

 
Although all three methods gave similar results for estimating the signal variance (see Fig. 4), the deviation of the 
estimated parameter using different slices varies. The Parzen window approach has the lowest average deviation which 
is about 23.24 (less than 5% of error). The histogram approach has an average deviation of about 47.19 (less than 10% of 
error). The conventional method has an average deviation of 25.63 if the background regions are selected from the 
bottom few slices that result the value in Fig 4. The bottom few slices in our DT-MR data set is the slices which contain 
large amounts of background. If the background regions are select from each slice, then the deviation is larger and 
estimated signal variances are varied. 
 
 

5. DISCUSSION 
 
Most statistical packages use Sturges rule, log2(n)+1, as the number of bins 5. However, the Sturges rule leads to an 
oversmoothed histogram especially for large samples (for n greater than 200) and underestimates the peak 9. Alternative 

rules for constructing a histogram, specified in terms of bin width, h, include Scott’s rule 6, 3153 /n.h −
∧
σ= , and 

Freedman and Diaconis’s rule 7, 312 /Rnh −= , where 
∧
σ is the sample standard deviation and R is the interquartile range 

of the sample. Although these rules are based on constructing a histogram from normal data and lead to an oversmoothed 
histogram for large samples 9, we used the Sturges rule to provide an initial guess (other rules can be used) with the final 
number of bins depending on a predefined empirical choice (as described in the Methods section). In addition, as we are 
interested in finding the location of the peak instead of the peak’s amplitude, the oversmoothed histogram has less effect 
on the location of the peak. 
 
For the kernel estimator, the exact choice of basis function is not very important as long as it is smooth and bell-shaped 
10. The choice of a smoothing parameter, h, is important, but there is no firm rule governing the choice. The best choice 
of window width, h, may require further experimentation to balance the desired smoothness of the estimator with the 
right amount of oversmoothing to avoid overlooking real variation in the density. As with the histogram approach, a 
number objective methods remove some of this subjective choice, such as the rule we used, h = 1.06 × s × n-1/5 or h = 
1.06 × min(s, R/1.34) × n-1/5, where s is the sample standard deviation and R is the interquartile range from the sample 10. 
 
The result in Figure 4 used the slices from each volume as a subset and a set of signal standard deviation { iσ | i is the 
slice number} was obtained. For large SNR (> 5), the standard deviation of iσ  should be small since the object-signal 
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distribution is less contaminated by the noise (i.e., the noise and the object-signal distributions are better separated). For 
a small SNR, the high intensity part of noise distribution may mix with the low intensity part of object-signal distribution 
such that the peak of the noise distribution may be shifted to the right. The minimum of iσ  should thus be considered as 
the signal standard deviation for the entire data set. For the histogram approach, the bin width was set empirically and 
when the variation of the histogram is large, the local maximum might be identified as the peak of noise distribution. 
Consequently, using the quartile of iσ is recommended. 
 
Because of its accuracy, the Parzen window method is the best choice for estimating signal variance, but it requires a 
long computation time. To reduce this length, any slice in a volume can be used for estimation because the deviation of 
estimated iσ using different slices is small. However, because more background in general will provide a better result, 
we suggest using the first and the last slices for estimation, taking the one with the smallest estimated value. 
 
 

6. CONCLUSION 
 
An automatic method for estimating the signal variance in magnitude-reconstructed MRI is presented. This method 
works on only one image to estimate the signal variance, does not require any user interaction as no destination of 
background pixels is needed, and does not require prior brain segmentation. The proposed method is less subjective to 
artifacts than the conventional manual object-free background selection. Also, the proposed method yields an estimated 
signal variance with lower variability than that resulting from manual background selection. The proposed method is 
useful in creating a pipeline in processing massive MR data. 
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